Abstract

Thin MoO2 films were electrodeposited on a selenium pre-deposited SnO2|glass plate. The photoelectrochemical properties of MoO2 films were investigated in 0.1 M Na2SO4 solution by the ultraviolet–visible spectrophotometry, linear sweep voltammetry, and altering current impedance measurement techniques. It was found that under illumination with the incident light of λ = 366 nm, the photo response of the MoO2|SnO2|glass electrode resulted from the MoO2 layer, while the SnO2 layer served as a sink for photogenerated charge carriers. The MoO2 film exhibited n-type conductivity. A schematic band structure diagram of MoO2 in 0.1 M Na2SO4 solution was constructed. The flat band potential (E fb), the donor concentration (N D), the photogeneration current efficiency depended on MoO2 film thickness. The [Fe(CN)6]4−/3− redox PEC cell with MoO2|SnO2|glass plate as a photoanode was constructed. Power output characteristics such as the open circuit voltage (V OC), short circuit current (I SC), the fill factor (FF), and the light-to-electrical conversion efficiency (η) were determined. The maximum light-to-electrical conversion efficiency exhibited by the PEC cell was 0.94 %.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.