Abstract
One of the crucial challenges in enhancing the photoelectrochemical (PEC) water splitting performance of BiVO4 photoanode is to improve the charge separation and transfer efficiency. Therefore, in this paper, a novel multilayer gradient W-doped BiVO4 photoanode is fabricated for improved performances in solar water splitting. Firstly, different amounts of W mono-doped BiVO4 photoanodes are prepared, and the W (5%)-doped BiVO4 photoanode reaches highest photocurrent density of 0.61 mA cm−2 at 1.23 V versus reversible hydrogen electrode (RHE). Compared with the photocurrent density of the pure BiVO4 photoanode (0.28 mA cm−2), the enhancement can be attributed to the doped W which acts as an electron donor that could reduce the surface charge transfer resistance and facilitate charge transfer. Furthermore, multilayer gradient W-doped BiVO4 photoanodes are prepared to enhance PEC performances. The BVO-530 achieves a photocurrent density of 1.17 mA cm−2 at 1.23 V versus RHE due to the multilayer gradient structure which forms a diffusion path for electron–holes caused by the gradual increase in the Fermi level. The mechanisms of multilayer gradient W-doped BiVO4 photoanodes are discussed in detail based on PEC measurements. This work provides a new strategy for designing and fabricating photoanode systems to enhance the charge separation and transport for efficient water splitting.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have