Abstract

Nanostructured BiVO4 films were synthesized by coevaporation of bismuth and vanadium in an oxygen ambient, a process referred to as reactive ballistic deposition (RBD). The films were tested in various electrolyte solutions to assess their activity for photoelectrochemical water oxidation. Deposition parameters, including the V/Bi atomic flux ratio and the incident angle of deposition, were adjusted. Films deposited with excess vanadium (V/Bi = 2) and incident angles of deposition at 65° showed the highest initial photocurrents with IPCE values above 21% for light wavelengths of 340−460 nm (in 0.5 M Na2SO4 at 1.0 V vs Ag/AgCl). With continued illumination the excess vanadium in these films dissolved into the electrolyte and the photocurrents dropped by 60−75% before reaching steady state. The steady-state photocurrent and IPCE values (above 14% for 340−460 nm light) were higher than the initial values for films synthesized with stoichiometric amounts of vanadium and bismuth (V/Bi = 1) and incident angles ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.