Abstract

Ti doped hematite photoanodes have been intensively investigated due to their excellent activity for photoelectrochemical water oxidation. However, little attention has been paid to the doping effect on the photocurrent onset potential of hematite and the underlying mechanism. In this paper, Ti doped hematite nanorod arrays were successfully prepared through a facile treatment of hematite with TiCl₃ solution. The photocurrent of the Ti doped hematite photoanode increases by three times, and its onset potential shifts more positively as compared with that of the undoped one. Electrochemical analyses were employed to unravel the mechanism of anodic shift of the onset potential. Cyclic voltammograms and electrochemical impedance spectra confirmed that more surface states were formed in Ti doped hematite than the undoped one. As a result, lower activity towards oxygen evolution reaction (OER) and increased electron-hole recombination after light on/off in low potential region were observed in Ti doped hematite. It is concluded that these doping induced surface states may be a hindrance to charge transfer and the onset potential of Ti doped hematite shifts anodically.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call