Abstract

In this work, nanostructured α-Fe2O3 thin films have been deposited onto the glass and fluorine doped tin oxide coated glass substrates using simple chemical bath deposition method. The influence of bath temperature on the properties of α-Fe2O3 thin films are studied with the help of different characterization techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy, Raman spectroscopy, Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and optical properties. XRD study reveals that films are polycrystalline in nature with rhombohedral crystal structure. Raman spectroscopy is used to study the structure and symmetry of α-Fe2O3 thin films. The SEM study reveals that substrate surface is well covered with small tiny grains. Specific surface area of 30.12 m2 g−1 is measured by BET technique. Optical study shows that the band gap energy of α-Fe2O3 film is varied from 2.19 to 2.35 eV. The synthesized α-Fe2O3 photoelectrode is used as a catalyst for the photoelectrocatalytic degradation of 4-chlorphenol in an aqueous medium. The photoelectrocatalytic degradation experiment shows that the degradation percentage of 4-chlorophenol (4-CP) has reached 50% under sunlight illumination after 240 min. The mineralization of 4-CP with reaction time is studied with the help of chemical oxygen demand (COD) measurement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.