Abstract

Both theory and observation suggest that metallicity profoundly alters the properties and structure of the Photodissociation Regions (PDRs; e.g., Madden et al. 1997). Several factors contribute to the differences between high and low metallicity systems: altered gas phase and grain surface chemistry due to the low Si, C and S elemental abundances, and diminished dust shielding because of the low dust-to-gas ratio. Since there is less dust shielding, UV photons penetrate more deeply into the molecular clouds leaving H2 unaffected but photodissociating most other molecules everywhere except in the most opaque clumps. Thus, a low-metallicity system contains large regions where hydrogen remains molecular but the usual tracers of molecular gas like CO are photodissociated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.