Abstract

Assuming that damped Lyman-alpha(DLA) systems are galactic discs, we calculate the corresponding evolution of metal abundances. We use detailed multi-zone models of galactic chemical evolution (reproducing successfully the observed properties of disc galaxies) and appropriate statistics (including geometrical propability factors) to calculate the average metallicity as a function of redshift. The results are compatible with available observations, provided that observational biases are taken into account, as suggested by Boisse et al. (1998). In particular, high column density and high metallicity systems are not detected because the light of backround quasars is severely extinguished, while low column density and low metallicity systems are not detectable through their absorption lines by current surveys. We show that these observational constraints lead to a ``no-evolution'' picture for the DLA metallicity, which does not allow to draw strong conclusions about the nature of those systems or about their role in ``cosmic chemical evolution''.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call