Abstract

Jet-cooled HI has been excited using a resonant three-photon excitation scheme to energies corresponding to 13.39 and 15.59 eV. Analysis of velocity mapping images of the iodine atom fragments allowed the identification of the HI excited states at these energies as the (4Σ–1/2) 6p superexcited state and the repulsive 4Σ–1/2 state of HI+, respectively. Following excitation at 13.39 eV, we observe formation of iodine atomic fragments through the H(2S) + I[(3PJ) 6p] (J = 0, 1, 2) fragment channels, as well as through the H(2S) + I[(1D2) 6p] channel. This observation is explained by extensive nonadiabatic interactions between the (4Σ–1/2) 6p state with the repulsive (4Π1/2) 6p state and the weakly bound (A 2Σ+) 6p state. In support for this proposed dissociation mechanism excitation of the corresponding ionic 4Σ–1/2 state at 15.59 eV also results in formation of comparable quantities of I+ in its 1D2, 3P0,1, and 3P2 levels indicating again extensive nonadiabatic interactions with other repulsive curves. A similar mechanism based on the local interaction of the 4Σ–1/2 state with the A 2Σ+ and the 4Π1/2 state is proposed. PACS Nos.: 82.50F, 32.80R

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call