Abstract

Photodissociation of naphthalene (Np) dimer radical cation (Np2*+) to give naphthalene radical cation (Np*+) and Np and the subsequent regeneration of Np2*+ by the dimerization of Np*+ and Np were directly observed during the two-color two-laser flash photolysis in solution at room temperature. When Np2*+ was excited at the charge-resonance (CR) band with the 1064-nm laser, the bleaching and recovery of the transient absorption at 570 and 1000 nm, assigned to the local excitation (LE) and CR bands of Np2*+, respectively, were observed together with the growth and decay of the transient absorption at 685 nm, assigned to Np*+. The dissociation of Np2*+ proceeds via a one-photon process within the 5-ns laser flash to give Np*+ and Np in the quantum yield of 3.2 x 10(-3) and in the chemical yield of 100%. The recovery time profiles of Np2*+ at 570 and 1000 nm were equivalent to the decay time profile of Np*+ at 685 nm, suggesting that the dimerization of Np*+ and Np occurs to regenerate Np2*+ in 100% yield. Similar experimental results of the photodissociation and regeneration of Np2*+ were observed during the pulse radiolysis-laser flash photolysis of Np in 1,2-dichloroethane. The photodissociation mechanism can be explained based on the crossing between two potential surfaces of the excited-state Np2*+ and ground-state Np*+.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call