Abstract

The photodissociation dynamics of AlO at 193 nm is studied using time-sliced ion velocity mapping. Two dissociation channels are found through the speed and angular distributions of aluminum ions: one is one-photon dissociation of the neutral AlO to generate Al(2Pu)+O(3Pg), and the other is two-photon ionization and then dissociation of AlO+ to generate Al+(1Sg)+O(3Pg). Each dissociation channel includes the contribution of AlO in the vibrational states v=0-2. The anisotropy parameter of the neutral dissociation channel is more dependent on the vibration state of AlO than the ion dissociation channel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call