Abstract

The X2Σ+→X1Σ+ anion to neutral ground state photodetachment of BeO- has been studied by means of photoelectron velocity-map imaging spectroscopy in a newly constructed apparatus. Vibrational intervals, rotational constants, and the electron detachment threshold of BeO- were determined for the first time. The small moment of inertia of beryllium oxide allowed for the observation of partially resolved rotational contours. Analyses of these contours provided evidence of several detachment channels resulting from changes in molecular rotational angular momenta of ΔN = 0, ±1, ±2, and ±3. The relative intensities of these detachment channels were found to be a function of the electron kinetic energy. Experimental results are compared to the predictions of high level ab initio calculations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call