Abstract

Acetoxy-1,2,2-tri(aryl)ethanone (1) is a novel and visual release-and-report system that contains the photochromic diarylethylene function attached to the photocage dimethoxybenzoin platform. However, the mechanism of 1 cyclization and a subsequent deprotection remains unclear. Here, we use femtosecond and nanosecond transient absorption spectroscopies in combination with density functional theory computations to study the detailed reaction mechanism. The photodeprotection proceeds with competition between pathways initiated by two different configurations of the singlet excited state of 1 (labeled as 11LE and 11CT); the stepwise elimination after cyclization of 11LE constitutes the predominant pathway, whereas the concerted removal of acetic acid after cyclization of 11CT is the minor pathway. These results contribute to a detailed photodeprotection mechanism of 1 and provide new insights into the effect of geometric configurations of intermediates on the photodeprotection pathways. This new information can help in the further development of this type of the photolabile protecting group (PPG) for the protection of biorelevant molecules and in the design of an improved and versatile release-and-report PPG.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call