Abstract

Polychlorinated biphenyls (PCBs), as a class of hydrophobic organic pollutants, are widely found in river sediments and suspended particles, and the environmental fate of different PCBs can be better understood by investigating their photochemical transformation process. In this study, the quantitative structure-activity relationship (QSAR) model between the photodegradation rate constants of 17 PCBs adsorbed on Yellow River suspended particles in water (as a typical heterogeneous photodegradation system) and the physicochemical parameters of PCBs was constructed by SPSS and machine learning. The model showed that the more hydrophobicity of the molecule, the more positive charge carried by the aromatic C atoms, and the presence of chlorine atoms adjacent to the carbon bridge could all enhance the photochemical activity of PCBs. From the combined analysis of rate constants, quenching experiments and theoretical calculations, it was revealed for the first time that in natural suspended particle containing organic matter, the higher concentration of •O2- and 1O2 in the hydrophobic zone contributed more to the more hydrophobic PCBs, while •OH in the hydrophilic zone played a major role in the degradation of the less hydrophobic PCBs. Findings of this study would deepen the understanding of the degradation mechanism of hydrophobic pollutants by active species in complex environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.