Abstract

The photodegradation of bisphenol A (BPA) in aqueous solution containing metal ions and ascorbic acid (AsA) was investigated. After strong irradiation, the aqueous solution containing AsA and Cu2+ could produce hydroxyl radicals that induced the photodegradation of BPA. The photodegradation efficiency of BPA in the solution containing 70 μmol·L−1 Cu2+ and 15 mg·L−1 AsA reached 59% at pH 6.0 after 4 hours irradiation with high pressure mercury lamp. The photodegradation efficiency of BPA reached 10% after 4 hours irradiation with daylight lamp in the presence of 70 μmol·L−1 Cu2+ and 15 mg·L−1 ascorbic acid. BPA was not degraded in the aqueous solution only containing AsA or Cu2+. The BPA photodegradation in aqueous solution containing AsA and Fe3+ was weaker than in aqueous solution that containing AsA and Cu2+ at the same concentration. This work showed a new route of the BPA photodegradation in aqueous environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call