Abstract

Current–voltage characteristics under illumination of monochromatic light for metal-free tetrabenzporphyrin, metal-free triazatetrabenzporphyrin, and metal-free phthalocyanine in (indium–tin–oxide)/porphyrin/Al sandwich cells seem to show high-energy conversion efficiencies of 14%, 7.7%, and 5.5%, respectively. However, according to the simultaneous measurement of both short-circuit photocurrent and transmittance of the aluminum electrode with time, the transmittance of Al linearly increases as the photocurrent flows into the external circuit. It is concluded that all photocurrents in the above cells arise from photoaccelerated corrosion of aluminum electrode and do not originate from conversion of light energy to electrical energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.