Abstract
We chose DPP-BDT-DPP {DPP=diketopyrrolopyrrole, BDT=4,8-di-[2-(2-ethylhexyl)-thienyl]benzo[1,2-b:4,5-b']dithiophene} as a model backbone and varied the anchoring groups [C5 H11 , COOCH3 , and SiCH3 (OSiCH3 )2 ] terminated on the N-substituted alkyl-chain spacer of the DPP units to study the effect of anchoring terminals on the morphology of blend film and on the device performances of bulk heterojunction solar cells. By replacing the nonpolar C5 H11 anchoring terminal with the polar COOCH3 anchoring terminal leads to an enhancement in the short-circuit current density (Jsc ) (4.62 vs. 9.32 mA cm(-2) ), whereas the value of Jsc sharply decreases to 0.45 mA cm(-2) if the C5 H11 anchoring terminal is replaced by a SiCH3 (OSiCH3 )2 group. The changes in Jsc are associated with changes in the π-π stacking distance (3.39→3.34 Å vs. 3.39→3.45 Å) and the phase size (50→20 nm vs. 50→>250 nm) through alteration of the anchoring group from C5 H11 to COOCH3 versus from C5 H11 to SiCH3 (OSiCH3 )2 . Interestingly, the anchoring terminals bring about drastic changes in molecular orientations, which result in different out-of-plane hole transport. This is the first time this effect has been systemically demonstrated to improve photocurrent generation by manipulating the dipolar anchoring groups terminated on the alkyl-chain spacer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.