Abstract

We report the fabrication of intrinsic and Zn-doped InP single nanowire devices by the vapor–liquid–solid and photolithography techniques. Nanowires with a zincblend structure around 100 nm in radius and length at the micrometer scale were readily observed. Electrical measurements of samples containing single nanowires revealed Ohmic and Schottky behavior for the intrinsic and Zn-doped InP devices respectively. The Zn-doped InP device exhibited a thermal and optical dependence with high photosensitivity, whose main conduction mechanism for temperatures ranging from 160 K to 300 K was verified to be variable range hopping, displaying a hopping distance on the order of 240 nm at a low temperature. Strong temperature-dependent positive magnetoresistance was verified for this device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.