Abstract

Starting from the multiple trapping rate equations that define the non-equilibrium concentrations of electrons and holes in extended states, the experiment of photocurrent decay from the steady-state is examined. A system of non-linear coupled differential equations is solved to get the temporal evolution of the occupation functions and the carrier concentrations after cessation of the illumination. Different expressions proposed in the literature to evaluate the carrier lifetimes from the photocurrent decay data are critically examined. Measurements performed on a series of hydrogenated amorphous silicon samples deposited at different substrate temperatures are reproduced by the simulations. It is found that the response time determined from the photocurrent initial rate-of-decay provides an excellent estimation of the free lifetime of the majority carrier, provided the decay is recorded from sufficiently short times. It is also found that the common recombination lifetime can also be estimated from the photocurrent decay data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.