Abstract
<abstract><p>This paper analyzes the coupled system of nonlinear fractional differential equations involving the caputo fractional derivatives of order $ \alpha\in(1, 2) $ on the interval (0, T). Our method of analysis is based on the reduction of the given system to an equivalent system of integral equations, then the resulting equation is discretized by using a spectral method based on the Legendre polynomials. We have constructed a Legendre spectral collocation method for the coupled system of nonlinear fractional differential equations. The error bounds under the $ L^2- $ and $ L^{\infty}- $norms is also provided, then the theoretical result is validated by a number of numerical tests.</p></abstract>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.