Abstract

We observe microwave-induced photocurrent and photovoltage oscillations around zero as a function of the applied magnetic field in high mobility GaAs 2D electron systems. The photosignals pass zero whenever the microwave frequency is close to a multiple of the cyclotron resonance frequency. They originate from built-in electric fields due to for instance band bending at contacts. The oscillations correspond to a suppression (screening) or an enhancement ("antiscreening") of these fields by the photoexcited electrons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.