Abstract

Using a bromo-terminated poly(ethylene oxide) as a macroinitiator, an amphiphilic liquid–crystalline (LC) diblock copolymer with an azobenzene moiety as a nematic mesogen was prepared by an atom transfer radical polymerization process. In thin films of the well-defined diblock copolymer with the mesogenic block as a continuous phase upon microphase separation, the influence of supramolecular cooperative motion on the microphase-separated nanocylinders was systematically studied. Although the major phase of the hydrophobic nematic LC block showed only one-dimensional order, it could endow the separated minor phase of the hydrophilic PEO nanocylinders with three-dimensionally ordered structures. Both out-of-plane perpendicular and in-plane parallel patternings of the regularly ordered nanocylinder arrays were successfully fabricated on macroscopic scales by thermal annealing and photoalignment, respectively. The microphase-separated nanostructures with high regularity showed excellent reproducibility and mass production, which might guarantee nanotemplated fabrication processes and would lead to novel industrial applications in macromolecular engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call