Abstract

In order to explore the possibility of bandgap engineering in binary oxide insulators we studied photoconductivity of nanometer-thin Hf oxide layers containing different fractions of cations of another sort (Si, Al, Sr, or Ce) deposited on (1 0 0)Si. The smallest bandgaps of the Hf:Al and Hf:Ce oxides are close to the values found in elemental Al 2O 3 (6–6.2 eV) and HfO 2 (5.6 eV), respectively, and show little sensitivity to the concentration of Al or Ce. This result suggests that the oxide sub-network with the largest bandgap preserves its gap energy, while development of a narrower gap is prevented, likely, by dilution of the second cation sub-network. In Hf:Si oxide samples photoconductivity thresholds of 5.6–5.9 eV, corresponding to the bandgap of HfO 2, were observed for all studied Si concentrations, suggesting phase separation to occur during deposition. Photoconductivity of SrHfO 3 exhibits two thresholds, at 4.4 and 5.7 eV, which are close to the bandgaps of elemental SrO 2 and HfO 2, respectively. These gap values indicate the phase separation also to occur in this binary oxide. Through this work photoconductivity is demonstrated to be a feasible method to trace phase separation in binary oxides, even in nanometer-thin layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.