Abstract

Various structures of self-assembled Ge/Si quantum dot infrared photodetectors were implemented and investigated. The electronic structure of the QDIPs was studied by electrical and optical techniques including I– V characteristics, dark current, photoconductivity, photoluminescence, and photo-induced infrared absorption. The photoconductive spectra consist of a broad multi-peak, composed of peaks ranging from 70 to 220 meV. Their relative intensity changes with bias. Comparative dark current measurements were performed. Dark current limits the performance of this first generation of Ge/Si QDIPs. It is plausible that direct doping in the dot layer is a viable way of reducing the dark current.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.