Abstract

We report on a theoretical analysis and experimental verification of a mechanism for photoconductance, the change in conductance upon illumination, in symmetric single-molecule junctions. We demonstrate that photoconductance at resonant illumination arises due to the Coulomb interaction between the electrons and holes in the molecular bridge, so-called exciton-binding. Using a scanning tunneling microscopy break junction technique, we measure the conductance histograms of perylene tetracarboxylic diimide (PTCDI) molecules attached to Au-electrodes, in the dark and under illumination, and show a significant and reversible change in conductance, as expected from the theory. Finally, we show how our description of the photoconductance leads to a simple design principle for enhancing the performance of molecular switches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.