Abstract

AbstractWhile gas-phase reactions and surface reactions on bare carbonaceous or siliceous dust grains contribute to cosmic chemistry, the energetic processing of cosmic ices via photochemistry and radiation chemistry is thought to be the dominant mechanism for the cosmic synthesis of prebiotic molecules. Because most previous laboratory astrochemical studies have used light sources that produce >10 eV photons and are, therefore, capable of ionizing cosmic ice analogs, discerning the role of photochemistry vs. radiation chemistry in astrochemistry is challenging. By using a source whose photon energy does not exceed 8 eV, we have studied ammonia and methanol cosmic ice reactions attributable solely to photochemistry. We compare these results to those obtained in the same ultrahigh vacuum chamber with 1 keV electrons which instead initiate radiation chemistry in cosmic ice analogs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.