Abstract

The mechanisms for the direct photolysis of phenylthioacetic acid (PTAA) and S-benzylthioglycolic acid (SBTGA) in acetonitrile were investigated using steady-state and laser flash photolysis. For both compounds, a variety of stable photoproducts were found under steady-state, 254 nm irradiation of acetonitrile solutions. The products from the direct photolysis of PTAA included carbon dioxide (photodecarboxylation), acetic acid, diphenyl disulfide, diphenyl sulfide, thiophenol, thioanisole, di(phenylthio) methane, and S-phenyl benzenethiosulfate. The products from the direct photolysis of SBTGA included carbon dioxide, toluene, dibenzyl, dibenzyl sulfide, dibenzyl disulfide, thioglycolic acid, benzyl mercaptan, benzyl alcohol, and benzaldehyde. These stable photoproducts were identified and characterized using HPLC, GC, GC–MS, and UV–vis methods. Quantum yields were determined for the formation of the various stable products following steady-state irradiations in the absence and in the presence of oxygen. In laser flash photolysis (266 nm Nd:YAG laser) experiments, a variety of transients (e.g., phenylthiyl radical, benzyl radical, etc.) was found. For both substrates (PTAA and SBTGA), photoinduced C S bond cleavage was the main primary process. It was also found that for both acids, photoinduced C C bond cleavage occurred, but as a minor process relative to C S bond cleavage. Detailed mechanisms of the primary and secondary processes are proposed and discussed. The validity of these proposed mechanisms was supported by an analysis of the quantum yields of stable products and their transient precursors. Supplementary observations on reactions between the radicals (e.g., C 6H 5–S , C 6H 5– CH 2) and oxygen are also consistent with the proposed mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call