Abstract
The effect of different wavelengths on plants morphological characters has been widely described, but also the chemical composition of the essential oil is influenced by the lighting conditions in which they are grown. In the present study, the effect of both the enrichment (reverse Emerson effect) and the monochromatic lighting treatments with red light has been evaluated on the essential oil compositions of parsley (Petroselinum crispum (Mill.) Fuss). Multivariate statistical analysis was performed on the results, with both the hierarchical cluster and principal component analyses. Whilst the red-enrichment of the light spectrum did not induce major changes in the essential oil composition, the end of the day monochromatic red (660 nm) treatment caused a chemotype switch in the essential oil and relevant differences in the overall composition, with an increment of the relative abundance of oxygenated compounds, coupled with a relevant decrement in the abundance of phenylpropanoids. The extraction yields remained unchanged in all the three tested conditions of light (control, red-enriched and monochromatic red). Different lighting conditions could be used as a tool to modulate the compounds present in the essential oil, but further studies would be advisable to assess the effects on different species and chemical classes of compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Photochemistry & Photobiology, B: Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.