Abstract

Nitrogen-doped TiO2 was applied in photocatalytic ozonation reactions for the degradation of a mixture of five parabens under UVA radiation, being evaluated the influence of the reaction medium. The initial mixture parabens concentration considered in these experiments was 50 mg L−1. The parabens degradation rate was considerably enhanced under neutral pH, specially using a buffered solution, leading to a complete removal under 60 min and with transferred ozone dose (TOD) 36% lower compared to reaction under natural conditions. Isopropanol, known radical scavenger, impeded the complete contaminants removal, affecting the reaction route and by-products formation, but when KI was jointly added, total removal was achieved under 30 min and with a TOD of 25.9 mg L−1. Parabens depletion was also improved in the presence of Cl−, SO42− and HCO3−, commonly present in wastewaters. The use of river water (RW) and a secondary wastewater (SWW) as water matrices maintained the process efficiency with lower TOD required, and treated solutions presented lower phytotoxicity towards Lepidium sativum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call