Abstract

Photocatalytic efficiency of titania thin-films on ITO synthesized in the presence of nonylphenol-surfactants containing different numbers of ethoxylate-units was investigated under solar-irradiation. A colorless transparent titania-gel formed in the non-aqueous medium in the presence of nonylphenol-10-ethoxylates while milky white opaque gel was observed with nonylphenol-35-ethoxylates. They were coated on ITO plate by dipping method and calcined at 350, 500 and 700 °C. The XRD, IRRAS, EDS, SEM and AFM analyses revealed that different composite nanostructures are formed by calcinations of Ti-nonylphenol-35-ethoxylates at 350 and 500 °C. The photocatalytic-efficiencies of the composite films are better than the other titania nanostructures. Transparency and band-gap energy evaluated from transmittance measurements demonstrated that visible-light responsive Ti-nonylphenol-35-ethoxylates composites are more efficient catalysts than UV-absorbable Ti-nonylphenol-10-ethoxylates films. The photocatalytic degradation rate of the methylene-blue on the catalysts was calculated using the Langmuir-Hinshelwood equation and its modified form derived in this study by considering intensity changes in solar light. The dye degradation efficiency of the Ti-nonylphenol-ethoxylate films changes in the 58–74% range after 2 h of irradiation in 0.02 mM MB solution. The solution completely decolorized after 8 h of irradiation on the TiNP-35 catalysts calcined at 350 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call