Abstract
Phototransformation is considered one of the most key factors affecting the fate of pesticides. Therefore, our study focused on photocatalytic degradation of three selected pesticide derivatives: trifluralin (1), clodinafop-propargyl (2), and 1,2-dichloro-4-nitrobenzene (3). The degradation was carried out in acetonitrile/water medium in the presence of titanium dioxide (TiO2) under continuous purging of atmospheric air. The course of degradation was followed by thin-layer chromatography and gas chromatography-mass spectrometry techniques. Electron ionization mass spectrometry was used to identify the degradation species. GC-MS analysis indicates the formation of several intermediate products which have been characterized on the basis of molecular ion, mass fragmentation pattern, and comparison with NIST library. The photocatalytic degradation of pesticides of different chemical structures manifested distinctly different degradation mechanism. The major routes for the degradation of pesticides were found to be (a) dealkylation, dehalogenation, and decarboxylation, (b) hydroxylation, (c) oxidation of side chain, if present, (d) isomerization and cyclization, (e) cleavage of alkoxy bond, and (f) reduction of triple bond to double bond and nitro group to amino.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.