Abstract
Fabrication of heterojunction and surface defective engineering, through the formation of oxygen vacancies, are among the various photocatalytic enhancement techniques. A combination of these techniques has the prospect of enhancing photocatalytic activities through improved light absorption capabilities and charge separation process of the photocatalysts. In this study, a heterojunction of black titanium oxide-zinc oxide (BTiO2–ZnO) nanocomposite was synthesized using the conventional sol-gel approach, coupled with aluminum foil-assisted NaBH4 reduction. The structure, morphology, surface properties, and optical characteristics of the synthesized material were studied using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), UV–vis absorption spectra, scanning electron microscope (SEM), Energy-dispersive X-ray spectroscopy (EDS), and transmission electron microscope (TEM). The XRD confirmed the successful formation of BTiO2–ZnO heterostructure, while SEM revealed the structural morphology as pseudo-spherical with slight agglomeration. BTiO2–ZnO was found to be more efficient than BTiO2 and BZnO for the removal of tetracycline with degradation efficiencies of 63, 58, and 56 % respectively. The effects of process parameters such as the amount of photocatalyst, pollutant's concentration, and the initial solution pH on photocatalytic degradation study were systematically explored. The results confirm that the formation of the heterostructure from BTiO2 and BZnO could offer a facile route to improving the catalytic degradation of tetracycline. Therefore, this study offers a novel perspective on the design of efficient metal oxide photocatalyst systems that rely on the integration of defect engineering and heterojunction for the removal of organic contaminants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.