Abstract

Pollution by textile dyes on waterbodies is an issue for both human health and the environment. To remove/degrade dyes, many approaches (coagulation, membrane separation, and adsorption) have been investigated. However, the use of semiconductor-assisted materials in conjunction with sustainable solar energy has emerged as a possible solution to the problem. Although single component photocatalysts have been tested, composites of semiconductor materials are being employed owing to their low efficiency and stability due to the high recombination rate electron-hole pair and inefficient visible light absorption. By combining two or more semiconductor components, semiconductor heterojunction systems are created. Overall stability is increased by the synergistic impact of their features, such as adsorption and better charge carrier movement. This paper discusses current advances in advanced nanocomposite materials utilized as photocatalysts, as well as the utilization of heterojunctions, crystallinity, and doping to improve photocatalytic characteristics. The conclusion includes a summary, research gaps, and a forecast for the future. This study will aid in the development of efficient heterostructure photodegradation systems by providing a comprehensive appraisal of recent advances in demonstrating effective nanocomposites for photodegradation of Rhodamine B dye under ideal circumstances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call