Abstract

In this study, MgAl2O4 nanoparticles with different calcination times were synthesized for photocatalytic applications. Different analyses techniques such as XRD, SEM, EDX, UV-visible, and FTIR were performed to investigate the structural, chemical, optical, and mor-phological properties of the synthesized nanoparticles. XRD analysis revealed the formation MgAl2O4 spinel structure. UV-Visible measurements indicate that MgAl2O4-2 nanoparticles had a narrower energy gap compared to MgAl2O4-1 and MgAl2O4-3. Results of SEM analysis revealed that the synthesized MgAl2O4 nanoparticles consist of small aggregated particles with (40-60 nm) particles size. EDX measurements con-firmed the formation of MgAl2O4 nanoparticles without any impurities. The photocatalytic performance was evaluated by the photodegradation of polyethylene plastics using MgAl2O4 nanoparticles under UV irradiation. The FT-IR measurements before and after the degradation of polyethylene plastics confirm the formation of new functional groups as a result of photodegradation processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.