Abstract
A great challenge for this century lies in cleaning-up the wastewater generated during industrial, domestic and agricultural activities before being released, into the aquatic environment, or reused for another purpose e.g. irrigation. Phenolic compounds among the various organic contaminates found in wastewater require special attention because of their toxic effect on humans and the environment. Their presence has been confirmed in many different industrial wastewaters. These phenolic compounds are refractory ones and the efficiency of their traditional treatment techniques is low. Therefore, the use of an effective and economic elimination technique for phenolic compounds in wastewater becomes an urgent demand. Advanced oxidation processes (AOPs) represents the most recent technology in wastewater treatment. TiO2 is known to be an excellent photocatalyst. However, there are some challenges regarding using TiO2 in the industrial scale. Significant attention is directed towards using carbonaceous nanomaterials as support to enhance photocatalytic behavior of TiO2 due to their unique and controllable structural and electrical properties. In this work, low percentage of reduced graphene oxide (RGO) and graphene oxide (GO) were supported on TiO2 seeking a better catalytic performances. These composites were tested for degrading some phenolic compounds using UV as photoexcitation source in presence of some oxidants e.g. H2O2. It was found that small loadings of GO and RGO decreased the band gap energy for TiO2 and increased the efficiency and decreased the time needed for the photodegradation of phenolic compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.