Abstract
In this paper, we present the first attempt to evaluate the role of carboxymethyl cellulose (CMC) as a chelating agent in the sol-gel auto-combustion method of producing barium hexaferrite (BaFe12O19). We also report the application of the system as a photocatalyst for dye degradation. The formation, morphology, and crystalline structure of the synthesized nanoparticles are determined using XRD, SEM, EDS, VSM, FTIR, and TEM techniques. High efficiency under visible light, with a band gap of 1.62eV and a BET surface of 17.93 m2/g, has been observed for the BaFe12O19 catalyst. The operating parameters, such as reaction time, initial dye concentration, light intensity, reusability, and dye type, are studied. Degradation rates as high as 98.26% (Kapp = 0.082min-1) and 89.07% (Kapp = 0.0743min-1) were obtained for cases of methylene blue and malachite green under conditions of visible light irradiations when BaFe12O19 was used. The BaFe12O19 catalyst has been shown to exhibit a high degradation performance for cationic dyes. Furthermore, BaFe12O19 magnetic nanoparticles show excellent reusability for dye degradation because the photocatalyst did not exhibit a significant decrease in its activity even after five runs (81.56%). As a result, the current study confirmed that photocatalytic degradation was a promising technology for saving water and treating wastewater formed from textile dye industries. The technique can be used to study the efficiency of photocatalytic degradation and understand the process of recycling waste effluents under conditions of minimized water use.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.