Abstract

An efficient, environmentally compatible and highly porous, silver surface-modified photocatalytic zinc oxide/cellulose acetate/ polypyrrole ZnO/CA/Ppy hybrid nanofibers matrix was fabricated using an electrospinning technique. Electrospinning parameters such as solution flow rate, applied voltage and the distance between needles to collector were optimized. The optimum homogenous and uniform ZnO/CA/Ppy polymeric composite nanofiber was fabricated through the dispersion of 0.05% wt ZnO into the dissolved hybrid polymeric solution with an average nanofiber diameter ranged between 125 and 170 nm. The fabricated ZnO-polymeric nanofiber was further surface-immobilized with silver nanoparticles to enhance its photocatalytic activity through the reduction of the nanofiber bandgap. A comparative study between ZnO polymeric nanofiber before and after silver immobilization was investigated using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and thermal gravimetric analysis (TGA). The photocatalytic degradation efficiency of the two different prepared nanofibers before and after nanosilver immobilization for malachite green (MG) dye was compared against various experimental parameters. The optimum degradation efficiency of nanosilver surface-modified ZnO-polymeric nanofibers was recorded as 93.5% for malachite green dye after 1 h compared with 63% for ZnO-polymeric nanofibers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.