Abstract

Humic acid (HA), the most highly prevalent type of natural organic matter (NOM), plays an effective role in the generation of disinfectant byproducts such as trihalomethanes and haloacetic acid, which are well known to be definitive carcinogens. Therefore, the proactive elimination of HA from water and wastewater is a crucial means of preventing this pollutant from reacting with the chlorine incorporated during the disinfection process. This study investigated the UV light photocatalytic elimination of HA, employing a bentonite@Fe3O4@ZnO (BNTN@Fe3O4@ZnO) magnetic nanocomposite. The most significant variables pertinent to the photocatalytic degradation process examined in this work included the pH (3–11), nanocomposite dose (0.005–0.1 g/L), reaction time (5–180 min), and HA concentration (2–15 mg/L). The synthesized materials were characterized via field emission scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffractometer (XRD), energy-dispersive X-ray spectroscopy (EDX), and vibrating-sample magnetometer (VSM) techniques, all of which revealed outstanding catalytic properties for the BNTN@Fe3O4@ZnO. The conditions under which greater efficiency was achieved included a pH of 3, a nanocomposite dose of 0.01 g/L, and an HA concentration of 10 mg/L. Under these conditions, in just 90 min of photocatalytic reaction, an HA degradation efficiency of 100% was achieved. From the modeling study of the kinetic data, the Langmuir–Hinshelwood model showed good compliance (R2 = 0.97) with the empirical data and predicted values. Thus, it can be concluded that the BNTN@Fe3O4@ZnO catalyst acts very efficiently in the HA removal process under a variety of treatment conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call