Abstract

Nanocrystals (NCs) of CdS with oleate surface (NC-1) and octadecyl thiolate surface (NC-2), stabilized by a polycation shell, were doped with nickel bis(2-aminobenzenethiolate) (1), cobalt(III) chlorobis(dimethylglyoximato)(2-mercaptopyridine) (2), and also with 1,2-ethanedithiol and didodecylsulfide clathrochelates of cobalt(II) (3 and 4). The influence of doping on the photocatalytic activity in the hydrogen evolution reaction was investigated. Complex 1 appeared to be the most effective cocatalyst for H2 evolution with the reaction rate increased by the factor of 8—11. Accomodating the complex in a polymer shell yields the best result. The rate of H2 evolution increases monotonically with increasing concentration of this complex until the concentration achieves the ratio of one complex molecule per single NC. It is shown that the chemical composition of the surface has a significant influence on their photocatalytic activity in the hydrogen evolution reaction. The activity of NC-2 is 200 times that of NC-1. The replacement of oleate groups of the latter with sulfide increases the activity of these photocatalysts by a factor of 2000.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.