Abstract

The effective separation of photogenerated electrons and holes is the key to improve photocatalytic activity in hydrogen evolution reaction (HER). However, the mechanism of photoinduced charge transfer between the cocatalyst and the semiconducting heterojunction in a single nanocrystal is vague at present. Herein, the relationships between the crafted cocatalyst and the constructed semiconducting heterojunction in a single nanocrystal were verified. Manipulating these relationships will improve the performance of visible light-driven hydrogen evolution. As a model, we used CuInS2 (CIS) nanocrystals (NCs) modified by the cocatalyst platinum (Pt) NCs and the semiconductor cadmium sulfide (CdS), forming the ternary heterostructured NCs (HNCs). Under visible light irradiation, the photocatalytic activity in hydrogen evolution of Pt-CIS/CdS HNCs is 6.38 and 1.76 times higher than those of pristine CIS NCs and CIS/CdS HNCs, respectively. Transient absorption measurements certified that the high photocatalytic activity in the HER was attributed to the photoinduced electron transfer from the defect-mediated trap state in CIS to the cocatalyst Pt, which was superior to the direct Z-scheme heterojunction between CIS and CdS. This research paves a route for the design of a suitable cocatalyst and the formation of heterostructured semiconducting NCs for boosting the photocatalytic activity in solar energy conversion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call