Abstract

The microwave-synthesized zinc-oxide (ZnO) nanonorods of average length of ∼ 1500 nm and diameter ∼ 100 nm were irradiated with 6.5 meV electrons. From sample to sample, the electron fluence was varied over the range 5×1014 to 2.5×1015 e-cm−2. The pre- and post-electron-irradiated ZnO nanorods were characterized by X-ray diffraction, UV–VIS, EDAX, scanning electron microscopy, transmission electron microscopy, and BET methods. The results show that after electron irradiation, the ZnO nanorods could retain the hexagonal phase with the wurtzite structure; however, the average length of the ZnO nanorods reduced to ∼ 800 nm. Moreover, the oxygen atoms from a fraction of ZnO molecules were dislodged, and the process contributed to the formation of Zn–ZnO mixed phase, with increased zinc to oxygen ratio. In the photo-degradation of Rhodamine-B, a significant enhancement in the photocatalytic activity of the electron-irradiated ZnO nanorods was observed. This could be attributed to the induced defects, reduced dimensions, and increased surface area of the ZnO nanorods, in addition to the formation of the Zn–ZnO phase. All these could collectively contribute to the effective separation of the photogenerated electrons from the holes on the ZnO nanorods, and therefore enhance the photocatalytic activity under UV exposure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.