Abstract

The evolution of the early atmosphere was driven by changes in its chemical composition, which involved the formation of some critical gases. In this study, we demonstrate that nitrous oxide (N2O) can be produced from Miller’s early atmosphere (a mixture of CH4, NH3, H2, and H2O) by way of photocatalysis. Both NH3 and H2O were indispensable for the production of N2O by photocatalysis. Different conditions related to seawater and reaction temperature are also explored. N2O has a strong greenhouse gas effect, which is more able to warm the Earth than other gases and offers a reasonable explanation for the faint young Sun paradox on the early Earth. Moreover, the decomposition of N2O into N2 and O2 can be boosted by soft irradiation, providing a possible and important origin of atmospheric O2 and N2. The occurrence of O2 propelled the evolution of the atmosphere from being fundamentally reducing to oxidizing. This work describes a possible vital contribution of photocatalysis to the evolution of the early atmosphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.