Abstract

Alteration of 'normal' levels of ultraviolet-B light (UV-B, 280-320 nm) can affect plant chemical composition as well as growth; however, little is known about how plants perceive UV-B light. We have carried out fluence response curves, and demonstrated that the growth inhibition of etiolated Arabidopsis thaliana seedlings by low fluence UV light is specific to UV-B and not UV-A (320-390 nm). The response shows reciprocity between duration and intensity, at least over a limited range, and thus depends only on photon fluence and not on photon flux. The action spectrum for this response indicates a peak of maximum effectiveness at 290 nm, and response spectra at different fluences indicate that the most effective wavelength at 30,000 micromol m(-2) is 290 nm, whereas 300 nm light was the most effective at 100,000 micromol m(-2). This response occurs in mutant seedlings deficient in cryptochrome, phytochrome or phototropin, suggesting that none of the known photoreceptors is the major UV-B photoreceptor. Some null mutants in DNA repair enzymes show hypersensitivity to UV-B, suggesting that even at low fluence rates, direct damage to DNA may be one component of the response to UV-B.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call