Abstract

The improvement of performance and yield in both cultivar and species mixtures has been well established. Despite the clear benefits of crop mixtures to agriculture, identifying the critical mechanisms behind performance increases are largely lacking. We experimentally demonstrated that the benefits of rice cultivar mixtures were linked to relatedness-mediated intraspecific neighbour recognition and discrimination under both field and controlled conditions. We then tested biochemical mechanisms of responses in incubation experiments involving the addition of root exudates and a root-secreted signal, (-)-loliolide, followed by transcriptome analysis. We found that closely related cultivar mixtures increased grain yields by modifying root behaviour and accelerating flowering over distantly related mixtures. Importantly, these responses were accompanied by altered concentration of signalling (-)-loliolide that affected rice transcriptome profiling, directly regulating root growth and flowering gene expression. These findings suggest that beneficial crop combinations may be generated a-priori by manipulating neighbour genetic relatedness in rice cultivar mixtures and that root-secreted (-)-loliolide functions as a key mediator of genetic relatedness interactions. The ability of relatedness discrimination to regulate rice flowering and yield raises an intriguing possibility to increase crop production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.