Abstract

Advances in laser cooling of neutral atoms have made possible a new form of high-resolution laser spectroscopy: photoassociation of ultracold atoms. Colliding neutral atoms, confined in a laser trap, are photoassociated to bound excited states of the dimer molecule by absorbing a photon from a tunable laser. The technique can probe long range and “purely long range” molecular states that are difficult or impossible to detect by traditional means and, because of the extremely low energy of the colliding atoms (<1 mK), is capable of high resolution (<0.001 cm-1). The spectra are useful for atomic lifetime measurements, determination of atomic ground-state scattering information, and measurement of curve-crossing probabilities. Theoretical and experimental work in the field, including multiple resonance techniques and photo association line shapes, are reviewed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.