Abstract

The properties of photoassociation (PA) spectra near the intercombination line (the weak transition between $^{1}S_{0}$ and $^{3}P_{1}$ states) of group II atoms are theoretically investigated. As an example we have carried out a calculation for Calcium atoms colliding at ultra low temperatures of 1 mK, 1 $\mu$K, and 1 nK. Unlike in most current photoassociation spectroscopy the Doppler effect can significantly affect the shape of the investigated lines. Spectra are obtained using Ca--Ca and Ca--Ca$^*$ short-range {\it ab initio} potentials and long-range van der Waals and resonance dipole potentials. The similar van der Waals coefficients of ground $^{1}S_{0} + ^{1}S_{0}$ and excited $^{1}S_{0} + ^{3}P_{1}$ states cause the PA to differ greatly from those of strong, allowed transitions with resonant dipole interactions. The density of spectral lines is lower, the Condon points are at relatively short range, and the reflection approximation for the Franck-Condon factors is not applicable, and the spontaneous decay to bound ground-state molecules is efficient. Finally, the possibility of efficient production of cold molecules is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.