Abstract
A numerical investigation of two-laser photoassociation (PA) spectroscopy on spin-polarized metastable helium (He*) atoms is presented within the context of experimental observation of the least-bound energy level in the scattering potential and subsequent determination of the s-wave scattering length. Starting out from the model developed by Bohn and Julienne [Phys. Rev. A \textbf{60}, (1999) 414], PA rate coefficients are obtained as a function of the parameters of the two lasers. The rate coefficients are used to simulate one- and two-laser PA spectra. The results demonstrate the feasibility of a spectroscopic determination of the binding energy of the least-bound level. The simulated spectra may be used as a guideline when designing such an experiment, whereas the model may also be employed for fitting experimentally obtained PA spectra. In addition, the prospects for substantial modification of the He* scattering length by means of optical Feshbach resonances are considered. Several experimental issues relating to the numerical investigation presented here are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.