Abstract

The acetylcholine (AcCh) binding site in the AcCh transporter-vesamicol receptor (AcChT-VR) present in synaptic vesicles isolated from the electric organ of Torpedo was characterized. A high-affinity analogue of AcCh containing an aryl azido group, namely, cyclohexylmethyl cis-N-(4-azidophenacyl)-N-methylisonipecotate bromide (AzidoAcCh), was synthesized in nonradioactive and highly tritiated forms. AzidoAcCh was shown to be a competitive inhibitor of [3H]AcCh active transport and binding of [3H]-vesamicol to the allosteric site. The [3H]AzidoAcCh saturation curve was determined. In all cases the AcChT.AzidoAcCh complex exhibited an inhibition or dissociation constant of about 0.3 microM. Binding of [3H]AzidoAcCh was inhibited by vesamicol and AcCh. AzidoAcCh irreversibly blocked greater than 90% of the [3H]vesamicol binding sites after multiple rounds of photolysis and reequilibration with fresh ligand. Autofluorographs of synaptic vesicles photoaffinity-labeled with [3H]AzidoAcCh showed specific labeling of material exhibiting a continuous distribution from 50 to 250 kDa after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The result demonstrates that the AcChT has an unexpected structure highly suggestive of the synaptic vesicle proteoglycan.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.