Abstract
This study sought primarily to locate the acetylcholine (ACh) binding site in the vesicular acetylcholine transporter (VAChT). The design of the study also allowed us to locate residues linked to (a) the binding site for the allosteric inhibitor vesamicol and (b) the rates of the two transmembrane reorientation steps of a transport cycle. In more characterized proteins, ACh is known to be bound in part through cation-pi solvation by tryptophan, tyrosine, and phenylalanine residues. Each of 11 highly conserved W, Y, and F residues in putative transmembrane domains (TMDs) of rat VAChT was mutated to A and a different aromatic residue to test for loss of cation-pi solvation. Mutated VAChTs were expressed in PC12(A123.7) cells and characterized with the goal of determining whether mutations widely perturbed structure. The thermodynamic affinity for ACh was determined by displacement of trace [(3)H]-(-)-trans-2-(4-phenylpiperidino)cyclohexanol (vesamicol) with ACh, and Michaelis-Menten parameters were determined for [(3)H]ACh transport. Expression levels were determined with [(3)H]vesamicol saturation curves and Western blots, and they were used to normalize V(max) values. "Microscopic" parameters for individual binding and rate steps in the transport cycle were calculated on the basis of a published kinetics model. All mutants were expressed adequately, were properly glycosylated, and bound ACh and vesamicol. Subcellular mistargeting was shown not to be responsible for poor transport by some mutants. Mutation of residue W331, which lies in the beginning of TMD VIII proximal to the vesicular lumen, produced 5- and 9-fold decreased ACh affinities and no change in other parameters. This residue is a good candidate for cation-pi solvation of bound ACh. Mutation of four other residues decreased the ACh affinity up to 6-fold and also affected microscopic rate constants. The roles of these residues in ACh binding and transport thus are complex. Nine mutations allowed us to resolve the ACh and vesamicol binding sites from each other. Other mutations affected only the rates of the transmembrane reorientation steps, and four mutations increased the rate of one or the other. Two mutations increased the value of K(M) up to 5-fold as a result of rate effects with no ACh affinity effect. The results demonstrate that analysis of microscopic kinetics is required for the correct interpretation of mutational effects in VAChT. Results also are discussed in terms of recently determined three-dimensional structures for other transporters in the major facilitator superfamily.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.