Abstract
Antibiotic resistance combined with pathogen internalization leads to debilitating infections. Here we test novel superoxide producing, stimuli-activated quantum dots (QDs), to treat an intracellular infection of Salmonella enterica serovar Typhimurium in an osteoblast precursor cell line. These QDs are precisely tuned to reduce dissolved oxygen to superoxide and kill bacteria upon stimulation (e.g., light). We show QDs provide tunable clearance at various multiplicities of infection and limited host cell toxicity by modulating their concentration and stimuli intensity, proving the efficacy of superoxide producing QDs for intracellular infection treatment and establishing a framework for further testing in different infection models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.