Abstract

Pathogens such as Staphylococcus aureus are able to survive in many types of host cells including phagocytes such as neutrophils and macrophages, thereby resulting in intracellular infections. Treatment of intracellular infections by conventional antimicrobials (e.g., antibiotics) is often ineffective due to low intracellular efficacy of the drugs. Thus, novel techniques which can enhance the activity of antimicrobials within cells are highly demanded. Our recent studies have shown that photochemical internalization (PCI) is a promising approach for improving the efficacy of antibiotics such as gentamicin against intracellular staphylococcal infection. In this chapter, we describe the protocols aiming to study the potential of PCI-antibiotic treatment for intracellular infections in vitro and in vivo using a RAW 264.7 cell infection model and a zebrafish embryo infection model. Proof of concept of this approach is demonstrated. The protocols are expected to prompt further development of PCI-antimicrobial based novel therapies for clinically challenging infectious diseases associated with intracellular survival of pathogens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call